(Co)Evolution of (De)Centralized Neural Control for a Gravitationally Driven Machine
نویسندگان
چکیده
Using decentralized control structures for robot control can offer a lot of advantages, such as less complexity, better fault tolerance and more flexibility. In this paper the evolution of recurrent artificial neural networks as centralized and decentralized control architectures will be demonstrated. Both designs will be analyzed concerning their structure-function relations and robustness against lesion experiments. As an application, a gravitationally driven robotic system will be introduced. Its task can be allocated to a cooperative behavior of five subsystems. A co-evolutionary strategy for generating five autonomous agents in parallel will be described.
منابع مشابه
Performance evaluation of gang saw using hybrid ANFIS-DE and hybrid ANFIS-PSO algorithms
One of the most significant and effective criteria in the process of cutting dimensional rocks using the gang saw is the maximum energy consumption rate of the machine, and its accurate prediction and estimation can help designers and owners of this industry to achieve an optimal and economic process. In the present research work, it is attempted to study and provide models for predicting the m...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملStructure and function of evolved neuro-controllers for autonomous robots
The artificial life approach to evolutionary robotics is used as a fundamental framework for the development of a modular neural control of autonomous mobile robots. The applied evolutionary technique is especially designed to grow different neural structures with complex dynamical properties. This is due to a modular neurodynamics approach to cognitive systems, stating that cognitive processes...
متن کاملOnline Voltage Stability Monitoring and Prediction by Using Support Vector Machine Considering Overcurrent Protection for Transmission Lines
In this paper, a novel method is proposed to monitor the power system voltage stability using Support Vector Machine (SVM) by implementing real-time data received from the Wide Area Measurement System (WAMS). In this study, the effects of the protection schemes on the voltage magnitude of the buses are considered while they have not been investigated in previous researches. Considering overcurr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005